Sheet \#2

1 Determine the volume V of a region defined in a cylindrical coordinate system as $1 m \leq r \leq 2 m, 0 \leq \phi \leq \frac{\pi}{3} r a d$, and $0 \leq z \leq 1 m$ by integration. Check your result without performing the integration.

Answer

a. By integration

$1 \leq \rho \leq 2$	$0 \leq \phi \leq \frac{\pi}{3}$	$0 \leq z \leq 1$

$$
\begin{aligned}
& d v=\rho d \rho d \phi d z \\
& \text { volume }=\iiint d v \\
& V=\int_{0}^{1} \int_{0}^{\frac{\pi}{3}} \int_{1}^{2} \rho d \rho d \phi d z \\
& V=\left[\frac{\rho^{2}}{2}\right]_{1}^{2}[\phi]_{0}^{\frac{\pi}{3}}[z]_{0}^{1} \\
& V=\frac{3}{2} * \frac{\pi}{3} * 1=\frac{\pi}{2} m^{3}
\end{aligned}
$$

b. Without integration

$$
\begin{gathered}
V=\frac{1}{6}[\text { Volume of outer cylinder }- \text { Volume of inner cylinder }] \\
\qquad V=\frac{1}{6}\left[\pi \rho_{2}{ }^{2} l-\pi \rho_{1}{ }^{2} l\right] \\
V=\frac{\pi}{6}[4-1] * 1=\frac{\pi}{6} * 1 * 3=\frac{\pi}{2}
\end{gathered}
$$

2
2 Determine the area S of a surface in a spherical coordinate system as $r=2 \mathrm{~m}$ and $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{3} \quad \mathrm{rad}$.

Answer

$r=2 m$	$\frac{\pi}{4} \leq \theta \leq \frac{\pi}{3}$	$0 \leq \phi \leq 2 \pi$

$$
\text { surface area }=\iint d s
$$

$$
A=\int_{0}^{2 \pi} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} r^{2} \sin \theta d \theta d \phi
$$

$$
A=(2)^{2} *[-\cos \theta]_{\frac{\pi}{4}}^{\frac{\pi}{3}}[\emptyset]_{0}^{2 \pi}
$$

$$
A=4\left[\cos \frac{\pi}{4}-\cos \frac{\pi}{3}\right] 2 \pi
$$

$$
A=8 \pi\left[\frac{1}{\sqrt{2}}-\frac{1}{2}\right]
$$

$$
A=5.205 \mathrm{~m}^{2}
$$

3 Use the spherical coordinate system to find the area of the strip $\alpha \leq \theta \leq \beta$ on the spherical shell of $r=a$ show this strip by sketching. What result when $\alpha=0$ and $\beta=\pi$?

Answer

Strip $\alpha \leq \theta \leq \beta$ [spherical shell] $r=a$

$$
\begin{gathered}
A=\iint d s \\
A=\int_{0}^{2 \pi} \int_{\alpha}^{\beta} r^{2} \sin \theta d \theta d \phi \\
A=a^{2}[-\cos \theta]_{\alpha}^{\beta}[\phi]_{0}^{2 \pi} \\
A=a^{2}[\cos \alpha-\cos \beta] 2 \pi \\
A=2 \pi a^{2}[\cos \alpha-\cos \beta]
\end{gathered}
$$

For $(\alpha=0, \beta=\pi)$, the strip will become a sphere

$$
\begin{gathered}
A=2 \pi a^{2}[\cos (0)-\cos (\pi)] \\
A=4 \pi a^{2}
\end{gathered}
$$

4 Use the cylindrical coordinate system to find the area of the curved surface of a right circular cylinder where : $r=2 m, h=5 m$ and $30^{\circ} \leq \phi \leq 120^{\circ}$ as shown in fig

Answer

$$
\begin{gathered}
\rho=2 \\
\frac{\pi}{6} \leq \phi \leq \frac{2 \pi}{3} \\
h=5 m
\end{gathered}
$$

Area of the curved surface
i.e. $\rho=$ constant $=2$

$$
\begin{gathered}
d s=\rho d \phi d z \\
A=\rho \int_{0}^{5} \int_{\frac{\pi}{6}}^{\frac{2}{3} \pi} d \phi d z \\
A=\rho[z]_{0}^{5}[\phi]_{\frac{\pi}{6}}^{\frac{2 \pi}{3}} \\
A=2 \times 5 \times\left[\frac{2 \pi}{3}-\frac{\pi}{6}\right]=5 \pi m^{2}
\end{gathered}
$$

5 Given the point $P\left(5 \mathrm{~m}, 60^{\circ}, 2 \mathrm{~m}\right)$ and $Q\left(2 \mathrm{~m}, 110^{\circ},-1 \mathrm{~m}\right)$
(a) Find the distance $R_{P Q}$
(b) Give a unit vector in Cartesian coordinates at P that is directed towards Q

Answer

$$
\mathrm{P}\left(5,60^{\circ}, 2\right), \mathrm{Q}\left(2,110^{\circ},-1\right) \quad[\text { cylindrical }]
$$

(a) Find the distance $R_{P Q}$

Transforming points into Cartesian

$$
\begin{gathered}
x=\rho \cos \phi \\
y=\rho \sin \phi \\
z=z
\end{gathered}
$$

Point P	
	$x=5 \cos 60^{\circ}=2.5$
$y=5 \sin 60^{\circ}=4.33$	Point Q
$z=2$	$x=2 \cos 110^{\circ}=-0.684$
	$y=2 \sin 110^{\circ}=1.879$
$z=(2.5,4.33,2)$	$Q=-1$

$$
\begin{gathered}
\bar{R}_{P Q}=(-0.684-2.5) \bar{a}_{x}+(1.879-4.33) \bar{a}_{y}+(-1-2) \bar{a}_{z} \\
\bar{R}_{P Q}=-3.184 \bar{a}_{x}-2.45 \bar{a}_{y}-3 \bar{a}_{z}
\end{gathered}
$$

$$
\left|\bar{R}_{P Q}\right|=\sqrt{(3.184)^{2}+(2.45)^{2}+(3)^{2}}
$$

$$
\left|\bar{R}_{P Q}\right|=5.014 \mathrm{~m}
$$

(b) unit vector in Cartesian coordinates at P that is directed towards Q

$$
\begin{gathered}
\bar{a}_{P Q}=\frac{\bar{R}_{P Q}}{\left|\bar{R}_{P Q}\right|} \\
\bar{a}_{P Q}=\frac{-3.184 \bar{a}_{x}-2.45 \bar{a}_{y}-3 \bar{a}_{z}}{5.014} \\
\bar{a}_{P Q}=-0.635 \bar{a}_{x}-0.489 \bar{a}_{y}-0.598 \bar{a}_{z}
\end{gathered}
$$

